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This paper presents numerical analyses on dynamic behavior of a maglev vehicle with
a control system moving on #exible guideways. The vehicle is simpli"ed as a body with the
primary and the secondary suspension parts and has "ve-degree-of-freedom (d.o.f.). So, its
"ve kinds of motions, i.e., heave, sway, pitch, roll, and yaw motions are considered. The
numerical results show that the dynamical characteristics of a coupling maglev
vehicle/guideway system are di!erent from those of the uncoupling system in which the
deformation of the guideways is neglected. For the coupling system, one kind of disturbances
in the "ve motions may excite several other kinds of moving responses. Both the
disturbances and the control parameters have an in#uence on the stability of the dynamical
system. In order to make the system stable, regions for the disturbance of heave motion
or/and sway motion and the control parameters are numerically searched in detail.

( 2000 Academic Press
1. INTRODUCTION

As a new type of transportation on ground, a high-speed vehicle which is magnetically
levitated (maglev) has been proposed to meet future requirements of, for example, inter-city
transportation since the 1970s [1}5]. At present, some practical tests of maglev vehicles in
Japan and Germany show that a forward velocity of the vehicle may reach up to or over
500 km/h which is the highest one in all transportation tools on ground. For this kind of
vehicles, some mechanical characteristics including dynamical responses of vehicle,
vibration of guideways, and bearing capacity to a disturbance of motions, etc. have to be
considered in a concept design of maglev vehicles in order to guarantee the safety and ride
quality [5}8].

Chu and Moon [4] proposed a two-degree-of-freedom (d.o.f.) vehicle model in which the
transverse motion to the guideway (sway) and the rotation motion about the vertical axis
(yaw) were considered. Divergence and #utter were demonstrated by their experiments and
their theoretical model. Chiu et al. [6] and Katz et al. [7] studied the dynamic characteristic
of #exible guideways under magnetic suspension forces. Recently, Cai et al. [8, 9] and Cai
and Chen [10] numerically conducted some analyses on dynamic responses of a maglev
vehicle, the guideway and their interaction. For the vehicle, Cai and Chen [10] suggested
a three- and "ve-d.o.f. models in which various experimentally measured magnetic force
data were incorporated. Instabilities of the vehicle were observed from their analytical and
numerical solutions. For the guideway, the Bernoulli}Euler beam theory is used to describe
the dynamic responses of the period guideways [8]. The vehicle was considered as a moving
0022-460X/00/310043#19 $35.00/0 ( 2000 Academic Press
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force travelling at various speeds on a simply supported single or two span beam(s).
Dynamic interactions between the guideway and the vehicle were also studied by Cai et al.
[8, 9], in which the vehicle was, respectively, considered to be a concentrated load [8] and
a multicar, multiload [9] with two-d.o.f., and the magnetic suspension forces exerted on the
vehicle are not considered. Some very useful conclusions are obtained in their researches.

It is obvious that there exist at least three sub-systems, e.g., the vehicle motion, vibration
of guideways, and a control system for generating controllable maglev forces in a coupling
maglev vehicle/guideway system. It has been found that their interactions have strongly
in#uenced the dynamic stability of the system. Although the stability of dynamic control for
a magnetic suspension body on an undeformable ferromagnetic guideway was studied by
Moon [5], Meisenholder et al. [11], and Zhou and Zheng [12], no research has been found
to give a theoretical analysis for a coupling maglev vehicle/guideway system with
controllable maglev forces.

In this paper, a theoretical model for a coupling "ve-d.o.f. maglev vehicle/guideway
system with a controllable feedback magnetic force is presented to investigate the dynamic
behavior of motions of vehicle, vibration of guideways, and control stability. The maglev
force applied on the vehicle is analytically calculated. With the aid of the
Runge}Kutta}Merson method [13], a numerical code is proposed to simulate responses of
the non-linear dynamical system. By comparing the responses of the coupling system with
these of the uncoupling system, it is found that the responses of the coupling system are
di!erent from those of the uncoupling one for the same situations, i.e. the same geometric
and material parameters, the same control law and parameters, etc.. The e!ects of each
motion disturbance on responses of the coupling dynamical system with controllable forces
are displayed in a case study. The numerical results indicate that the stability of the system
is in#uenced by both the control parameters and the disturbances. That is, on the one hand,
for a given disturbance, the dynamical system may be stable by means of choosing a set of
control parameters in a certain region; On the other hand, for a set of given control
parameters, the dynamical system may be stable when a disturbance is not beyond a critical
value. The dependence between the control parameters and the heave or/and sway motion
disturbances is numerically searched when the coupling dynamical system is hopefully
controlled to be stable.

2. GOVERNING EQUATIONS

2.1. ANALYSIS ON FORCE SYSTEM

The system of a "ve-d.o.f. maglev vehicle studied here is shown in Figure 1. For the
guideways, the span length, the bending rigidity and the damping coe$cient are,
respectively, denoted by l, EJ and C

g
. The maglev vehicle is simpli"ed as four same

&&magnetic wheels'' and a mass lump consisting of a bogie and a car body. The magnetic
wheels and the mass lump are joined by springs and dampers. Here, the electromagnetic
attraction forces in the heave and the sway directions are generated from the magnetic
circuit between the magnetic wheels and the ferrous rails, which are controlled by the
electric circuits of a control system. The magnetic wheels and the mass lump are,
respectively, called the primary suspension bodies and the secondary suspension body,
which are identi"ed by the superscripts &&1'' and &&2'' respectively. The geometrical
parameters of the mass lump are denoted by a (2)]b (2)]h(2), and the masses of the mass
lump and each of the four magnetic wheels are represented by m(2) and m(1) respectively. It is
assumed that the springs and the dampers are linear, to which the spring coe$cients and



Figure 1. Schematic diagram of a Maglev vehicle guideway system.
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damping coe$cients are denoted by Kb and Cb (b"h, s, p, y, r which are the abbreviations
of heave, sway, pitch, yaw, and roll respectively). From the control system of magnetic
suspension, we know that a magnetic circuit which can be controlled is composed of the
magnetic wheels, the ferromagnetic guideways and the air region between the wheels and
the guideways. The electric resistance and the equivalent magnetic reluctances are
represented by R and R*a (t) (a"1, 2, 3, 4) respectively. The rated area of a magnetic pole,
or magnetic wheel, is denoted by A

0
"a(1)a ]b(1)a . Let w (t,x) be the de#ection of guideways

at position x and instant of time t, and w*a (t) be the de#ection of the guideways at the
position of the ath magnetic wheel. And y(1)a , z(1)a (a"1, 2, 3, 4) and y(2), z(2) are, respectively,
the co-ordinates of the primary and the secondary suspension bodies in the oxyz co-
ordinate system shown in Figure 1. According to the linear spring and damping relations,
and the formula of magnetic forces [5], we have the following:

Restoring spring forces:

K
h
(y(2)!y(1)a ), K

s
(z(2)!z(1)a ) (a"1, 2, 3, 4). (1)

<iscous damping forces:

C
h
(yR (2)!yR (1)a ), C

s
(zR (2)!zR (1)a ) (a"1, 2, 3, 4). (2)
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Magnetic forces:

F
ya"

/2a (t)

k
0
Aa

, F
za"!

/2a (t)

n
a(1)z(1)a
k
0
A2a

(a"1, 2, 3, 4), (3)

where F
ya and F

za indicate the components of magnetic forces in the heave and the sway
directions respectively. Here, the dot && ) '' represents &&d/dt'', k

0
is the magnetic permeability

of vacuum, Aa"a(1)a ](b(1)a !z(1)a ) (a"1, 2, 3, 4) are the e!ective areas of magnetic pole,
and /a is the magnetic #ux at magnetic pole a, which is related to the magnetic reluctances
R*a :

/a (t)"
NIa (t)
R*a

(a"1, 2, 3, 4) (4)

in which N is the number of turns of coil, Ia represents the control current in the electric
circuit, and

R*a "R*
0
#r*sa(t) (a"1, 2, 3, 4). (5)

Here, r*"2/k
0
A

0
, sa(t)"da(t)!d

0
is the disturbance along the y-axis, R*

0
stands for the

e!ective magnetic reluctance between the magnetic wheel and the rail at the static
equilibrium state of the magnetic suspension with control goal of air gap d

0
, and da denotes

the air gap of the form

da(t)"y(1)a (t)!w*a (t) (a"1, 2, 3, 4). (6)

2.2. DYNAMICAL EQUATIONS

Applying the momentum law and the angular momentum law to the primary and the
secondary suspension bodies as shown in Figure 1, we can write

Equations of motions of Maglev vehicle

m(1)yK (1)a !C
h
(yR (2)!yR (1)a )!K

h
(y(2)!y(1)a )"m(1)g!F

ya (a"1, 2, 3, 4), (7)

m(1)zK (1)a !C
s
(zR (2)!zR (1)a )!K

s
(z(2)!z(1)a )"F

za (a"1, 2, 3, 4), (8)

m(2)yK (2)#C
h

4
+
a/1

(yR (2)!yR (1)a )#K
h

4
+
a/1

(y(2)!y(1)a )"m(2)g, (9)

m(2)zK (2)#C
s

4
+
a/1

(zR (2)!zR (1)a )#K
s

4
+
a/1

(z(2)!z(1)a )"0, (10)

J
p
hG
p
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p
hG
p
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p
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p
"(J
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y
)hQ

r
hQ
y
#¸

p
, (11)

J
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hG
y
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y
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y
h
y
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)hQ

p
hQ
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#¸

y
, (12)

J
r
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hQ
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r
h
r
"(J

y
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p
)hQ

y
hQ
p
#¸

r
, (13)
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in which the double dot && ))'' represents &&d2/dt2 11, and h
p
, h

y
and h

r
are the Euler's angles

which describe the rotations of pitch, yaw and roll respectively. The "rst terms on the
right-hand side of equations (11)}(13) indicate the components of the vector product of
angular velocity vector and angular momentum vector of the secondary suspension body in
the rotation axes of pitch, yaw and roll motions, respectively, which is generated from the
di!erence between time derivatives of the angular momentum vector of the body about the
("xed) space axes and the (moving) body axes, and J

p
, J

y
and J

r
are the moments of inertia

of the vehicle about the rotation axes of pitch, yaw, and roll motions, respectively, i.e.,

J
p
" 1

12
m(2)[(a(2))2#(h(2) )2], J

y
" 1

12
m(2)[(a(2))2#(b(2))2],

J
r
" 1

12
m(2)[(h(2))2#(b(2) )2], (14)

and ¸
p
, ¸

y
and ¸

r
are the force moments about the rotation axes of pitch, yaw and roll

motions respectively. They are

¸
p
"

d
1
2

[C
h
(yR (1)

4
#yR (1)

3
!yR (1)

2
!yR (1)

1
)!K

h
(y(1)

4
#y(1)

3
!y(1)

2
!y(1)

1
)] cosh

p
, (15)
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4
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1
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, (16)

¸
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2
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(yR (1)

4
!yR (1)

3
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2
!yR (1)

1
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h
(y(1)

4
!y(1)

3
#y(1)

2
!y(1)

1
)] cosh

r
. (17)

By the Bernoulli}Euler beam theory for the bending deformation of the guideways, we
have

De-ection equation:

EJ
L2w

Lx4
#C

g

Lw

Lt
#o

L2w

Lt2
"g

1
(t,x)

2
+
a/1

F
ya (t)/a(1)a #g

2
(t, x)

4
+
a/3

F
ya (t)/a(1)a (18)

in which

g
2
(t,x)"G

1

0

vt!
a(1)

2
)x)vt#

a(1)

2
,

else,

(19)

g
2
(t,x)"G

1

0

vt!d
1
!

a(1)

2
)x)vt!d

1
#

a(1)

2
,

else.

(20)

Here, a(1)"a(1)a . According to the circuit equivalence of Faraday's law, we get
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Control equations:

N
d/a (t)

dt
"!RIa (t)#<a(t) (a"1, 2, 3, 4), (21)

where <a are the control voltages which generate the control currents Ia to stabilize the
maglev vehicle.

Corresponding to the control goal of levitation gap d
0

which is pre-speci"ed hopefully,
we denote the bias current by I

0
provided by a constant voltage<a,0 in the electric circuit a.

Then, we may further denote

/a,0"
NI

0
R*

0

(a"1, 2, 3, 4), (22)

<a,0 "RI
0

(a"1, 2, 3, 4), (23)

Ia (t)"I
0
#ia(t) (a"1, 2, 3, 4), (24)

<a(t)"<a,0#<a, c (t) (a"1, 2, 3, 4). (25)

Following Meisenholder and Wang [11] and Moon [5], we choose the following control
law:

<a, c (t)"G
1
sa (t)#G

2
sR a(t) (a"1, 2, 3, 4), (26)

where G
1

and G
2

are the gains of control parameters. According to equations (3)}(6) and
(22), and applying the equilibrium equation to vehicle in the vertical direction, one may get
a dependence of I

0
of the form

4
+
a/1

(NI
0
/R*

0
)2

k
0
Aa

"(4m (1)#m(2) )g. (27)

Substituting equations (4) and (26) into equation (21), and considering equations (5), (6),
(23)}(25), and (27), when Dsa (t) D@1, we can obtain

dia
dt

"

1

N2
[G

1
(y(1)a !u*a !d

0
)#G

2
(yR (1)a !wR *a )!Ria] [R*

0
#r* (y(1)a !w*a!d

0
)]

#

r*(yR (1)a !wR *a ) (I
0
#ia )

R*
0
#r* (y(1)a !u*a !d

0
)

(a"1, 2, 3, 4). (28)

Thus, equations (7)}(13), (18) and (28) constitute the governing equations of a maglev
vehicle/guideway system with controllable maglev forces. In these basic equations, the
maglev forces given by equation (3) can be written as

F
ya"Am(1)#

1

4
m(2)B g

A
0

a(1)a (b(1)a !z(1)a )

(1#ia/I0)2

(1#r*/R*
0
(y(1)a !u*a !d

0
))2

(a"1, 2, 3, 4) ,

(29a)
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F
za"!

1

n Am(1)#
1

4
m(2)B g

A
0
z(1)a

a(1)a (b(1)a !z(1)a )2

(1#ia/I0)2

(1#r*/R*
0

(y(1)a !u*a !d
0
) )2

(a"1, 2, 3, 4) .

(29b)

It is obvious from equation (29) that maglev forces F
ya and F

za (a"1, 2, 3, 4) are non-
linearly dependent on the de#ection of guideways and the vehicle motions. Besides that,
they are non-linearly dependent on the control current so that they are controllable by
adjusting the gains of control parameters G

1
and G

2
. Therefore, the basic equations

proposed in this paper to describe the dynamic behavior of the maglev vehicle/guideway
system are non-linear and simultaneous partial di!erential equations about unknown
control currents and unknown displacements.

3. SOLUTION METHOD

For the purpose of simplicity in the numerical analysis of dynamic characteristics to the
control system, here, we introduced the following dimensionless quantities:
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l
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"
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"
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l
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l
, bM (1)"
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l
, aN (2)"

a(2)

l
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g
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C
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G
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G
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0
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0
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R*
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,
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lI2
0
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"
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l

m(1)v
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"
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l2

m(1)v2
, CM b2

"

Cb2

m(1) lv
, KM b2

"

Kb2

m(1)v2

(b
1
"h, s, b

2
"p, y, r), (30)

After that, the dynamic and control equations of equations (7)}(13), (18) and (28) may be
reduced into ones with dimensionless form. For the dimensionless partial di!erential
equation corresponding to the bending equation (18) of guideways, we use the method of
modal analysis in which

wN (xN , tN )"
N
+
n/1

>
n
(tN )U

n
(xN ). (31)

Here U
n
(xN ) is the orthonormal modal function of order n for the free vibration of the

guideways. For example, when the guideways are simply supported at the ends of a single
span, we have

U
n
(xN )"sin nnxN . (32)
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And >
n
(tM ) is the nth modal co-ordinate to be determined. Substituting equations (31) into

the dimensionless bending equation of the guideways, and applying the Galerkin method,
one can get a set of ordinary di!erential equations with unknowns>

n
(n"1, 2, 3,2,N ). At

the following quantitative analysis, we take N"5 because the numerical test shows that
when N"5, the numerical solution for the de#ection function has enough accuracy if we
focus on those vibrations of the guideways with low frequency.

For simplicity in expression, we will omit the bar over each dimensionless quantity if
there is no obscure understanding. For example, we use w for wN . Once we denote

x
2k~1

"y(1)a , x
2k
"yR (1)a , x

2k`9
"z(1)a , x

2k`10
"zR (1)a , x

26`k
"iQ a , (k"a"1, 2, 3, 4) ,

x
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"y(2), x
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"yR (2), x
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"z(2), x
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"zR (2), x
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p
, (33)
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r
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r
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x
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">
j
, x

30`2j
">Q

j
( j"1, 2,2, 5),

the dimensionless equations of the dynamical control system can be rewritten by the matrix
form in state space as

dX (t)

dt
"A (t)X(t)#F (t)#C. (34)

Here, A (t) is a matrix of order 40]40 (see Appendix A), and
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where b(1)"b(1)a . From equation (34), it is found that the dynamic control system is
governed by a set of ordinary di!erential equations with variable coe$cients.

4. NUMERICAL RESULTS AND DISCUSSIONS

In order to quantitatively simulate the characteristics of the coupling control system
described in the previous sections, some numerical method has to be employed. Here, the
Runge}Kutta}Merson method [13] of numerical integrals is applied to equation (34) such
that the roundo! error in the numerical method may be avoided. Based on this numerical
code, a numerical example is given to understand the characteristics of the dynamical
control system. Table 1 lists the parameters of the system of the numerical example.

First of all, the dynamic responses of the coupling vehicle/guideway system and the
uncoupling system are, respectively, simulated when a small heave disturbance
y(2)
0
"8)0]10~4 on the initial displacement of the car body is pre-given. The numerical

results demonstrate that when the guideway deformation is ignored, or vehicle/guideway
system is uncoupling, only the heave motion is excited, and the vehicle quickly reaches its
stable steady state if the control parameters G

1
and G

2
are taken in the stable region of this

dynamical system. Once the de#ection of the guideways is considered in the dynamical
system, however, the four kinds of motions, i.e., heave, pitch, roll, and yaw, of the car body
are excited simultaneously (see Figure 2). The excited responses in the coupling maglev
vehicle guideway system vary with moving velocity v for a given disturbance and the given
control parameters. With the increase of the velocity v, the maximum displacement
increases before v)v

c
/2 and decreases after v*v

c
/2. Here v

c
is the one order characteristic

velocity of the vehicle, i.e., v
c
"(n/l) JEJ/o (o is the mass density of the guideway). Figure

3 exhibits the di!erent stability characteristics of the maglev systems. When G
1
"1)0]105,

G
2
"3)0]106, v"150 m/s, the heave #utter, shown in Figure 3.1, is found for both the

coupling and the uncoupling systems when an initial heave disturbance y(1)a0"4)0]10~4 is
given. By adjusting G

2
into G

2
"2)0]107, the uncoupling system becomes stable, but the

coupling maglev vehicle/guideway system is still unstable.
Next, the e!ects of one kind of disturbance in the "ve motions on the responses of the

coupling maglev vehicle/guideway system are simulated for v"150 m/s, which are plotted
in Figure 4. The numerical results indicate that one kind of disturbance may not only have
an in#uence on its own motion, but also excite several other motions of the vehicle. For
example, a disturbance of sway motion may excite all "ve motions. However, a rotation
disturbance, such as pitch, roll, and yaw motions, has in#uence only on the rotation
TABLE 1

Geometric and material parameters of the maglev system

K
h

8)0E#5 kg/s l 25m m(1) 1000 kg
C

h
5)0E#5 kg/s2 o 1500 kg/m m(2) 20000 kg

K
s

2)0E#4 kg/s C
g

0)05 kg/m s a(1) 1)0 m
C

s
3)0E#3 kg/s2 EJ 3)78E#9 N/m2 a(2) 8)5 m

K
p

8)0E#5 kg m2/s2 R 1 ) b(1) 0)028 m
C

p
2)0E#4 m2/s R*

0
200 A/wb b(2) 3)3 m

K
y

1)0E#5 kg m2/s2 I
0

28 A h(2) 3)0 m
C

y
2)0E#4 m2/s d

0
0)01 m d

1
6)5 m

K
r

1)0E#5 kg m2/s2 A
0

0)028 m2 d
2

3)5 m
C

r
2)0E#4 m2/s N 320



Figure 2. Four kinds of moving responses for vehicle guideway coupling system: l"50)0 m/s;
l"100)0 m/s; l"150)0 m/s .
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motions. These results tell us that the e!ects of a disturbance of linear displacements are
greater than that of a disturbance of angular displacements.

Finally, the e!ects of magnitude of a disturbance, moving velocity, and control
parameters on dynamical stability of the controlled maglev vehicle/guideway system are



Figure 3. Response curves of uncoupling and coupling systems for control parameters (l"150 m/s).
(a) G

1
"1)0]105, G

2
"3)0]106; (I) uncoupling system; (II) coupling system, (b) G

1
"1)0]105, G

2
"2)0]107;

(I) uncoupling system; (II) coupling system.

Figure 4. Moving responses of coupling system on di!erent disturbances (l"150 m/s). (a) Heave disturbance,
(b) sway disturbance, (c) pitch disturbance, (d) yaw disturbance, (e) roll disturbance: no disturbance,

with disturbance.
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Figure 4. Continued.
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discussed. When v"150 m/s and control parameters G
1
"8)0]105 and G

2
"1)0]107,

the numerical simulations demonstrate that the vehicle will collide with the guideway for
a heave disturbance y(1)a0"4)8]10~4 (see Figure 5(a)) and diverge for y(1)a0"5)6]10~4 (see
Figure 5(b)). For this situation, the dynamical system can become stable (see Figure 5(c)) as
long as we adjust G

2
of the system into G

2
"1)3]107. Figure 6 plots the e!ects of moving

velocity on the dynamic stability of the controlled system. When the control parameters are
taken as G

1
"6)0]105 and G

2
"1)0]107, the control system (or the response of heave

motion shown in Figure 6) is stable for v"50 m/s, but is unstable for v"150 m/s. Since the
magnitude of the disturbance exerted on the vehicle, the velocity and the control parameters
G

1
and G

2
play important roles in the dynamic stability of the system, it is necessary to

clearly know the dependence of G
1

or G
2

on the disturbances for a given velocity of the
system. This kind of dependence is searched in detail for the heave and sway disturbances
and shown in Figures 7 and 8, respectively, when v"150 m/s. Figures 7(a) and 8(a),



Figure 4. Continued.
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respectively, show the curves of the minimum value of G
2

with the magnitudes of the heave
and sway disturbances for a given G

1
. The numerical simulations demonstrate that when

G
2
)9)21]107 and G

2
is in the regions under the curves shown in Figures 7(a) and 8(a), the

dynamical control system may be controlled, or the system is stable. With the increasing of
magnitude of the disturbances, the minimum value G

2min
has to increase to keep the system

stable. However, there exists a critical value of the disturbance for a given system. When the
magnitude of the disturbance increases over the critical value, it is di$cult to make the
system stable no matter how one adjusts G

1
and G

2
. For this case, the system is

uncontrollable. In addition, for a given G
2
, the curves of the maximum value of G

1
with the

magnitudes of the heave and sway disturbances are, respectively, shown in Figures 7(b) and
8(b). When 20(G

1
)G

1max
and the disturbances are lower than the critical one, the system

can be controlled. Combining Figure 7 with Figure 8, we can determine a set of parameters
G

1
and G

2
for stable control when the magnitude of the disturbance is under its critical

value.



Figure 5. The e!ects of the suspension gap disturbance on the stability of the coupling system: (a)
y (1)a0"4)8]10~4, G

1
"8)0]106, G

2
"1)0]107; (b) y (1)a0"5)6]10~4, G

1
"8)0]106, G

2
"1)0]107; (c)

y (1)a0"4)8]10~4, G
1
"8)0]106, G

2
"1)3]107.
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5. CONCLUSIONS

This study develops a dynamic interaction model of a maglev vehicle/guideway system
under controllable magnetic suspension forces. The vehicle is considered to be with
"ve-degree-of-freedom, which consists of four primary and one secondary suspension
bodies jointed by linear springs and dampers. The Bernoulli}Euler beam equation is used
to model the characteristic of a #exible guideway. Divergence, #utter and colliding with the
guideway are observed by the model and numerical solutions presented in this paper. The
numerical results "nd that the coupling vehicle/guideway system is more sensitive for
the motion disturbances than the uncoupling one. System parameters such as the velocity
of the vehicle, gain coe$cients and applied motion disturbances play very important roles



Figure 6. The e!ects of velocity on the stability of the coupling system: (a) v"50)0 m/s; (b) v"150)0m/s.

Figure 7. Stability range for heave disturbances: (a) G1"1)0E#5; G1"1)5E#5;
G1"2)0E#5; G1"2)5E#5. (b) G2"4)5E#6; G2"5)5E#6;

G2"6)5E#6; G2"7)5E#6.
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Figure 8. Stability range for sway disturbances: (a) G1"1)0E#5; G1"1)5E#5;
G1"2)0E#5; G1"2)5E#5. (b) G2"5.5E#6; G2"6)5E#6;
G2"7)5E#6; G2"8)5E#6.
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in the dynamic instability of maglev vehicles. The system can be controlled by adjusting the
non-linear magnetic suspension force exerted on the system to change conditions of
the stability when the system parameters are in stable regions found in this paper.
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APPENDIX A: EXPRESSION OF MATRIX A
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